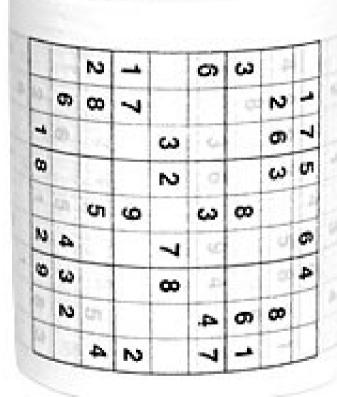
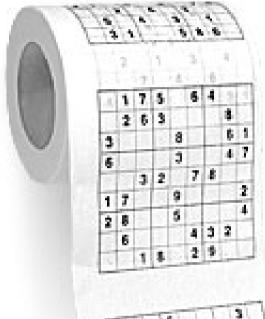

Sudoku et Logique Propositionnelle:


Les règles du sudoku



Exemples de sudokus

Algobox

Algorithme pour les lignes

Code de l'algorithme

```
▼ VARIABLES

→B EST DU TYPE NOMBRE

  HE EST OU TYPE NOMBRE
  F EST DU TYPE NOMBRE
  LS EST DU TYPE NOMBRE
  A EST DU TYPE NOMBRE

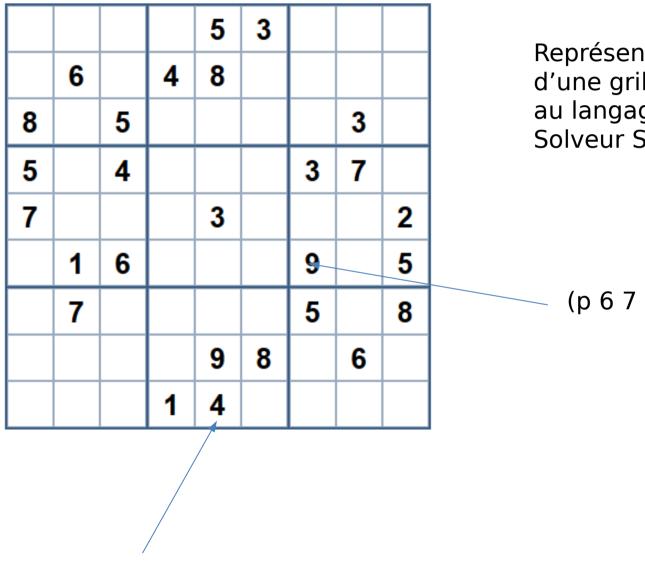
■V EST_DU_TYPE_NOMBRE.

DEBUT ALGORITHME
  HURE A
   LUBE B
   HIRE E
   ⊢ure r
   -S PREND LA VALEUR A+B+E+F
  -DEBUT SI
      -AFFICHER "FAUX"
     -FIN SI
    -DEBUT SINON
       -DEBUT SI
          -AFFICHER "Faux"
          -FIN SI
         ▼ SINON
            -DEBUT SINON
            AFFICHER "Vrai"
            FIN_SINON
       LIFIN SINON
 -FIN ALGORITHME
```

Comment savoir si une grille est correcte?

Le langage informatique de Solveur SAT

Ces images sont des contraintes extraites du logiciel Solveur SAT


$$\bigwedge_{i \in \{1, ..., 9\}} \bigwedge_{j \in \{1, ..., 9\}} \bigvee_{n \in \{1, ..., 9\}} (p i j n)$$

-Les chiffres du tableau doivent être des entiers compris entre 1 et 9

$$\bigwedge_{\mathbf{n} \in \{1, ..., 9\}} \bigvee_{\mathbf{i} \in \{7, ..., 9\}} \bigvee_{\mathbf{j} \in \{7, ..., 9\}} (p \ \mathbf{i} \ \mathbf{j} \ \mathbf{n})$$

-Dans le bloc en bas à droite, tous les chiffres (de 1 à 9) doivent être présents

La grille de sudoku diabolique à résoudre

(p954)

Représentation de la case d'une grille de sudoku grâce au langage informatique de Solveur SAT du type (p i j n)

(p679)

Résultat du sudoku diabolique

Cela correspond au numéro de la ligne de la grille

La formule est satisfiable, voici une solution :

				-			
$P_{1,1,1}$	$p_{1,2,9}$	$p_{1,3,7}$	$p_{1,4,6}$	$p_{1,5,5}$	$p_{1,6,3}$	$p_{1,7,8}$	
$p_{1,8,2}$	$p_{1,9,4}$	$p_{2,1,2}$	$p_{2,2,6}$	$p_{2,3,3}$	$p_{2,4,4}$	$p_{2,5,8}$	$p_{2,6,1}$
$p_{2,7,7}$	$p_{2,8,5}$	$p_{2,9,9}$	$p_{3,1,8}$	$p_{3,2,4}$	$p_{3,3,5}$	$p_{3,4,9}$	$p_{3,5,2}$
$p_{3,6,7}$	$p_{3,7,6}$	$p_{3,8,3}$	$p_{3,9,1}$	$p_{4,1,5}$	$p_{4,2,2}$	$p_{4,3,4}$	$p_{4,4,8}$
$p_{4,5,1}$	$p_{4,6,9}$	$p_{4,7,3}$	$p_{4,8,7}$	$p_{4,9,6}$	$p_{5,1,7}$	$p_{5,2,8}$	$p_{5,3,9}$
$p_{5,4,5}$	$p_{5,5,3}$	$p_{5,6,6}$	$p_{5,7,4}$	$p_{5,8,1}$	$p_{5,9,2}$	$p_{6,1,3}$	$p_{6,2,1}$
$p_{6,3,6}$	$p_{6,4,2}$	$p_{6,5,7}$	$p_{6,6,4}$	$p_{6,7,9}$	$p_{6,8,8}$	$p_{6,9,5}$	$p_{7,1,9}$
$p_{7,2,7}$	$p_{7,3,1}$	$p_{7,4,3}$	$p_{7,5,6}$	$p_{7,6,2}$	$p_{7,7,5}$	$p_{7,8,4}$	$p_{7,9,8}$
$p_{8,1,4}$	$p_{8,2,5}$	$p_{8,3,2}$	$p_{8,4,7}$	$p_{8,5,9}$	$p_{8,6,8}$	$p_{8,7,1}$	$p_{8,8,6}$
$p_{8,9,3}$	$p_{9,1,6}$	$p_{9,2,3}$	$p_{9,3,8}$	$p_{9,4,1}$	$p_{9,5,4}$	$p_{9,6,5}$	$p_{9,7,2}$
$p_{9,8,9}$	$p_{9,9,7}$						

Cela correspond au chiffre présent dans la case de la grille

Cela correspond au numéro de la colonne de la grille

1	9	7	6	5	3	8	2	4
2	6	3	4	8	1	7	5	9
8	4	5	9	2	7	6	3	1
5	2	4	8	1	9	3	7	6
7	8	9	5	3	6	4	1	2
3	1	6	2	7	4	9	8	5
9	7	1	3	6	2	5	4	8
4	5	2	7	9	8	1	6	3
6	3	8	1	4	5	2	9	7